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par t icular ly  with r a the r  complex centrosymmetr ic  
s tructures,  to preserve these terms for a t  least the  
ear ly  computat ions,  as errors in input  da t a  can be 
detected and isolated by  spurious non-zero values of 
B-contributions.  
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One contributing factor for the necessity of damping factors to insure convergence in the least- 
squares analysis of crystal structure parameters is the neglect of higher order derivatives in the 
Taylor series approximation for / IF .  I t  is shown here how a second derivative term can be introduced 
into the general framework of the procedure without requiring a major change in existing computa- 
tion programs. 

On the Taylor series approximation of A F  

It is a well established fact that the corrections 
2~Ax of positional parameters  calculated from the 
approximat ion  

A F = ~ (dFcddx) 2 ~A xi 
i 

by least-squares procedures often do not  result  in 
convergence to a value 27exi when these corrections 
are used as successive approximations.  This s tate  of 
affairs can be remedied by the  application of a rb i t r a ry  
damping factors to these calculated values of 27dx~. 
Usually,  the damping factors used in the first cycles 

have values between 0.2 and 0.5. These values are 
adjus ted upwards  either arbi trari ly,  or according to a 
scheme such as t ha t  proposed by  Vand & Pepinsky 
(1958) as convergence is approached.  The use of 
damping factors is somewhat  unsat isfactory,  since 
there appears  to be no theoretical basis for it. Since 
the best damping factor for a specific set of da t a  is 
not  known, convergence will be generally slower t han  
the ideal ra te  and non-uniform for different a toms 
(unless individually adjustable  damping factors are 
used). 

Up to now, the  feeling existed t ha t  the  need for 
damping factors can solely be associated with the  
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neglect of off-diagonal terms in the matr ix of the 
normal equations. There is, however, reason to believe 
that  the approximation chosen to r e p r e s e n t / i F  plays 
an important  role. Actually, this approximation is a 
Taylor series in which terms of order higher than one 
have been neglected. The full series has the form 

/ iF =.~, .,~ (1/n !)( Ax~ /  ~x + Ay~ /  ~y 
i n = l  

+ Az~OlOz + AB~O/OB)nFci, 

where Fc~ is the structure amplitude of each individual 
atom i. Unfortunately, the additional inclusion of 
only the second order terms in the standard frame- 
work of a least-squares analysis results in terms con- 
taining one or two unknowns in powers up to three. 
The solutions of the normal equations would be at best 
difficult to interpret. A more rigorous approach can 
therefore be used only under special conditions, for 
instance, when the sum of the first derivative terms is 
zero (Ibers, 1956). 

The expanded form of AF  can be thought of as a 
sum of Taylor series, each representing the contribu- 
tion A F~ of one individual atom in the asymmetric 
unit. In the following paragraphs, the effect of the 
functional representation chosen for this quanti ty  
A2'~ will be examined. I t  is presumed that  the solution 
of simultaneous equations, and the least-squares 
procedure, will in effect resolve each A F into the best 
approximations to its individual components /iF~, 
so that  a consideration of the isolated/I  F~ is meaning- 
ful. In the discussion to follow the simplified form 
F a = f  cos 2~hx~ has been assumed. 

It  is instructive to look at the geometrical implica- 
tions of the first derivative approximation for /IF. 
In  Fig. 1 a representation of this is given for one posi- 
tional parameter. /iF~ is the opposing side of a right 
triangle of which the adjacent is 2~h/ix~ and the 

hypotenuse the secant to the curve of F versus 2~hx 
through the points Fc~, 2~hx and Fc~, 2~h(xi--dx~). 
I t  is desired to find the correction increment by the 
relation 27~hdx~=-/ lFt / tana' .  Unfortunately, the 
exact value of tan c~' is not known, so that  it has to 
be approximated by tan a, the first derivative of the 
curve of F versus 2zhx at the point 2~h(xt-Ax~).  
I t  is clear that  the validity of this approximation 
depends on the magnitude of 2~hAx~ and the curvature 
between Fo~ and Fc~. This curvature becomes appreci- 
able as the cosine function approaches an extreme 
value. Geometrically, the correction increment found 
by the use of the first derivative is the difference 
between the 2~hx value of the intersection of the line 
F=Fo~ and the tangent of F(2~hx) in Fa, and the 
2~hx value of Fci. If ]F~tf is larger than IFo~I, then 
2~h/ix will be an overestimate; if it is smaller, 2~h/ix 
will be an underestimate. Since an overestimate brings 
the new F~ to the other side of Fo~, all correction 
increments should ideally be underestimates after the 
second cycle of calculations. The actual lack of con- 
vergence could be ascribed to the systematic coopera- 
tion of over- or underestimates. This would be espe- 
cially plausible for molecules having internal sym- 
metry. 

A simple way to avoid incorrect estimates due to 
curvature is to use data where the value of the cosine 
function is close to zero (Scatturin, 1958). In this case, 
the first derivative is a good approximation to tan ~'. 
In  practice, this would involve setting a limit for the 
value of the trigonometric function above which it is 
rejected for immediate use in the least-squares proce- 
dure. An example of this limit for the cosine function 
would have the form 

](cos 2 ~ h ( x -  Ax) - cos2zchx)/(2zlhAxsin 2zlhx) -- I I _<_ k. 

Here A x is an estimate of the maximum expected 

A C 1 3 - - 1 3  

1 
-A~ 

2~zMx," , 
, 2 ~ h . , I x i  

2~h(xi-/Ix~) 2~hxi 
2~hx ~. 

Fig. 1. Geometrical representation of first derivative approximation for •F. 
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value, and k is the maximum permissible percentage 
error of the calculated correction. The sign o f / I x  has 
to be chosen in each instance to make the left hand side 
of the inequality larger. This screening procedure is 
easily carried out by the inspection of a table, or as 
a standard step in machine computation. In succeed- 
ing cycles, the value of Ax substituted in the in- 
equality is the correction calculated in the previous 
cycle. Eventually, all data will be included in the 
calculations, unless k was chosen so small that  it is 
smaller than ha, where h has the maximum value 
occurring in the structure, and a is the standard devia- 
tion of the particular parameter. This approach has the 
property that  initially only the diagonal terms of the 
matr ix  are used in the least-squares procedure, since 
most terms in the approximation for a specific/1F will 
be zero. However, as more data are admitted the terms 
of overlapping atoms will appear together to permit 
calculation of cross products, then the terms with 
weaker interactions will appear until, at the admission 
of the last datum, the full matrix can be calculated. 

The problems connected with this approach include 
the initial assessment of a good value f o r / i x  in the 
possible presence of a misplaced atom, the selection of 
a practical value of k, and the necessity for a suf- 
ficiently large set of data. 

If provisions can be made for the inclusion of higher 
order derivatives in the least-squares procedure, the 
full set of data can be used in the initial calculation. 
I t  appears, however, that  derivatives higher than the 
second order will be unnecessary, since they are 
proportional to the first or second derivative, except 
for an additional attenuation due to the factors l/n! 
and (2~rhAx) ~, where m has a minimum value of 2. 

The main problem consists of building the second 
derivative term into the framework of the least- 
squares procedure without unduly complicating the 
solution of the matrix. This can be achieved by 
adjusting the values of the terms appearing in the 
condition equations, without changing their number, 
or the power to which 2~Ax~ is raised. For this pur- 
pose, the second derivative term is regarded as a cor- 
rection to either/IF~ or to tan c¢ (see Fig. 1), such that  
its inclusion results in the 'true' increment 2~Ax~ 
rather  than in the first derivative approximation 
2g~x~. When this is expressed formally, 

or 

where 

/iFi-- e = 2~h/ix~ tan c¢, 

/iFi =2~hAx~ (tan c~ + (3) , 

-- (1/2)(d2F/dx 2) (2~rhAx~)2, ~} = (1/2)(d2F/dx ~) 2~hAx~ 

and 
tan c¢ = (dF/dx). 

This means that  ¢ can be added to / IF~ or (~ can be 
added to (dF/dx) before the machinery of the least- 
squares procedure grinds out the crossmultiplications 

and summations to form the elements for the matr ix 
of the normal equations. 

In practice, this concept can be utilized in the 
following manner. As a first step, approximate values 
of 2~Ax~ are calculated in the usual manner (that is, 
neglecting second derivative terms). These values are 
then used to calculate the chosen correction terms, 
for instance ¢. Since in this case the corrections are 
applied only such that  AF~=AF-Zei ,  the recalcula- 
tion of the determinant is not required. Only the terms 
of the matrix in w h i c h / I F  appears are affected. The 
correction to the value computed in the first cycle can 
therefore be calculated by replacing the terms con- 
taining / IF  with analogous terms containing Z'e~. 
Saving the computation of the full determinant 
appears to be the main advantage of the correction ~. 
One of its disadvantages lies in the fact that  the 
initially calculated 2~rAx appears in the second power 
in the term ~. This may cause a large overcorrection 
for overestimated ~ix's, which would tend to retard 
convergence. 

The quanti ty 5 also involves the preliminary cal- 
culation of 27~Ax~ from first derivative terms only. 
This value is then employed in the calculation of each 
individual 5. These 6's are then added to the cor- 
responding first derivatives. With the 'first derivatives' 
corrected in this manner, the whole least-squares 
procedure is repeated to result in the improved value 
2~/ix~. 

The use of 6 in the context indicated before is more 
congenial with the spirit of the least-squares procedure. 
There appear to be these two advantages: the value of 
2~rAx~ obtained by the first derivative approximation 
enters into the correction ~ only in the first power, 
and the modifications due to ~ are extended to the 
off-diagonal terms of the matrix. Since both too large 
and too small initial estimates of 2~Ax lead to under- 
correction, the final value of the parameter will be 
approached from one side only. A change in the sign 
of the correction can therefore be taken as an indica- 
tion of the proximity of convergence. The only ap- 
parent disadvantage is the necessity of calculating at 
least two cycles for each acceptable correction. 

The calculation of the correction terms to (dF/dx) 
is not overly onerous, since 

s=-(2~h/Ixi)2Fci/2 and ~=--2~hAxiFcd2. 

The value of Fc~ (the structure factor of one atom) 
WaS calculated in the determination of AF=_Fo-P_F~. 
In  the computation of the full matrix, mixed derivative 
terms of the form (d2F~i/dxdy)2~h/ix~2~rk/ly~ will 
occur. Since they can be thought to arise from the 
sum of two terms having half this value, little violence 
appears to be done to the basic approach by appor- 
tioning one half of the mixed derivative terms to the 
first derivative in one variable, and the other half to 
the first derivative in the other variable during the 
application of the correction. If it is chosen to dis- 
regard crossterm effects, the first derivative result 
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2:r/ix~ can be corrected approximately by the factor 
[l+(2~r/ix~/2n)Zcf] -1 where n is the number of ob- 
servations and ~ can take forms ranging from 
hFci/(dFcddx) to hctn2~hx~. This approximation is 
based on the assumption that  it is permissible in the 
context of the least-squares procedure to replace all 
individual 5/tan a's by the average of all individuals. 

An analogous line of reasoning may be used in the 
analysis of atomic temperature (Debye-Waller) fac- 
tors. There are several ways in which the variously 
oriented ellipsoids have been described. For simplicity's 
sake, only the exponent B for a spherical atom will be 
considered. Since the exponential decreases mon- 
otonically with sin 9' 0/~ 2 = s, the first derivative ap- 
proximation will always result in a systematic error. 
If [Fc] is larger than ]Fof, this approximation will 
result in corrections that  are too small ; if IFc[ is smaller 
than IFol, the resultant corrections will be too large. 
Application of the previous concepts results in the 
terms 

e = [(/iBs) 2 + / i B s ( Z A  ri dFcddr)]F~i/2 
and 

0 = (/iBs + •/iri dF~ddr)Fci/2 , 

where r represents all positional parameters involved. 
If it is elected to disregard interactions with the 
positional parameters, the first derivative value o f / i B  
can be corrected by a factor (1- / iBg/2)  -1, where ~ is 
the average of the s-values of the data used. 

I t  appears, however, that  it might be advantageous 
to include temperature factor interactions with posi- 
tional parameters, that  is, analyze the corrections for 
both types of variables simultaneously. The following 
reasoning leads to this statement. I t  was shown 
before that  there is a predictable error in the positional 
parameter depending on the magnitude of ]Fo I relative 
to IFc[. Simple inspection will show that  as long as 
both Fo and Fc are on a branch with the same curva- 
ture, the absolute value of F of one subscript will 
always be larger than the other. If therefore the values 
of h for which data are available keep the majority of 
the F 's  on one type of branch, the first derivative 
approximation will be systematically in error. Since 
the error in / iB will always be in the same direction, 
both temperature factor and biased position correc- 
tions can interact to bring about erroneous values. 
The details of the effect depend on the sequence of 
the separate analyses employed for both types of 
variables. 

I t  is clear that  systematic errors are inherent in the 
use of the first derivative approximation, when the 

functions are or behave like monotonic functions over 
the range for which data are available. In this way 
positional parameters, each represented by a pseudo- 
monotonic function of h may also interfere with one 
another to retard convergence, especially if they are 
associated with the same atom. 

The scale factor has not been mentioned in the fore- 
going considerations since its second derivative is zero. 
I t  should be realized, however, that  an error in the 
scale factor is just as capable of interacting with the 
other variables to alter or simulate a bias due to 
effects such as the neglect of second derivative terms 
as was indicated before in the case of temperature 
factors and positional parameters. 

Although the term matrix has been used liberally 
in the preceding paragraphs, the proposed refinement 
techniques should be effective whether it is elected to 
compute diagonal terms only, or whether all off- 
diagonal terms are employed down to intraatomic 
cross terms. Also, there may be a stage in the refine- 
ment when it becomes superfluous to calculate second 
derivative corrections. This will be obvious when the 
increments calculated from the first derivative are 
compared to those calculated from first and second 
derivatives. 

All the approaches outlined before can be used 
readily within the framework of established least- 
squares programs for computers or desk calculators. 
The first approach would require in addition a small 
routine (or the use of a mathematical table) to decide 
the admission of a particular piece of data to the 
general program, the second and third a program to 
compute the corrections from stored values, to add 
them to stored values of (dF/dx) or /IF; and the use 
of the whole or part of the general program for cal- 
culation of the final correction increment. 

Consideration of the effect of the second derivative 
in some form, by the methods shown here or by 
others, should improve convergence, especially for 
atoms overlapping in projection; it should also facil- 
itate the introduction of the least-squares procedure 
at an earlier stage in the refinement of the structure. 
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